Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Shock ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38713551

RESUMEN

ABSTRACT: Ischemia-reperfusion injury (IRI) often stems from an imbalance between mitochondrial dynamics and autophagy. Melatonin mitigates IRI by regulating mitochondrial dynamics. However, the precise molecular mechanism underlying the role of melatonin in reducing IRI through modulating mitochondrial dynamics remains elusive. The objective of this study was to investigate whether pre-treatment with melatonin before IRI confers protective effects by modulating mitochondrial dynamics and mitophagy. Melatonin pre-treatment was administered to HK-2 cells and live rats before subjecting them to hypoxia-reoxygenation (HR) or IRI, respectively. Cells and rat kindey models were evaluated for markers of oxidative stress, autophagy, mitochondrial dynamics, and the expression of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and phospho-AMPKα (P-AMPK). Following renal IRI, increased mitochondrial fission and autophagy were observed, accompanied by exacerbated cellular oxidative stress injury and aggravated mitochondrial dysfunction. Nevertheless, melatonin pre-treatment inhibited mitochondrial fission, promoted mitochondrial fusion, and attenuated autophagy levels. This intervention was correlated with a notable reduction in oxidative stress injury and remarkable restoration of mitochondrial functionality. IRI led to a decline in P-AMPK levels, whereas melatonin pre-treatment increased the level of P-AMPK levels. Silencing AMPK with small interfering RNA exacerbated mitochondrial damage, and in this context, melatonin pre-treatment did not alleviate mitochondrial fission or autophagy levels but resulted in sustained oxidative stress damage. Collectively, these findings indicate that melatonin pre-treatment shields the kidneys from IRI by mitigating excessive mitochondrial fission, moderating autophagy levels, and preserving appropriate mitochondrial fission, all in an AMPK-dependent manner.

2.
Clin Chim Acta ; : 119718, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38718852

RESUMEN

Bladder cancer (BC) is ranked as the ninth most common malignancy worldwide, with approximately 570,000 new cases reported annually and over 200,000 deaths. Cystoscopy remains the gold standard for the diagnosis of BC, however, its invasiveness, cost, and discomfort have driven the demand for the development of non-invasive, cost-effective alternatives. Nuclear matrix protein 22 (NMP22) is a promising non-invasive diagnostic tool, having received FDA approval. Traditional methods for detecting NMP22 require a laboratory environment equipped with specialized equipment and trained personnel, thus, the development of NMP22 detection devices holds substantial potential for application. In this review, we evaluate the NMP22 sensors developed over the past decade, including electrochemical, colorimetric, and fluorescence biosensors. These sensors have enhanced detection sensitivity and overcome the limitations of existing diagnostic methods. However, many emerging devices exhibit deficiencies that limit their potential clinical use, therefore, we propose how sensor design can be optimized to enhance the likelihood of clinical translation and discuss the future applications of NMP22 as a legacy biomarker, providing insights for the design of new sensors.

3.
J Ethnopharmacol ; 329: 118144, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38583732

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Gynecological disorders have the characteristics of high incidence and recurrence rate, which sorely affects female's health. Since ancient times, traditional Chinese medicine (TCM), especially tonic medicine (TM), has been used to deal with gynecological disorders and has unique advantages in effectiveness and safety. AIM OF THE REVIEW: In this article, we aim to summarize the research progress of TMs in-vivo and in-vitro, including their formulas, single herbs, and compounds, for gynecological disorders treatment in recent years, and to offer a reference for further research on the treatment of gynecological disorders and their clinical application in the treatment of TMs. MATERIALS AND METHODS: Relevant information on the therapeutic potential of TMs against gynecological disorders was collected from several scientific databases including Web of Science, PubMed, CNKI, Google Scholar and other literature sources. RESULTS: So far, there are 46 different formulas, 3 single herbs, and 24 compounds used in the treatment of various gynecological disorders such as premature ovarian failure, endometriosis breast cancer, and so on. Many experimental results have shown that TMs can regulate apoptosis, invasion, migration, oxidative stress, and the immune system. In addition, the effect of TMs in gynecological disorders treatment may be due to the regulation of VEGF, PI3K-AKT, MAPK, NF-κB, and other signaling pathways. Apparently, TMs play an active role in the treatment of gynecological disorders by regulating these signaling pathways. CONCLUSION: TMs have a curative effect on the prevention and treatment of gynecological disorders. It could relieve and treat gynecological disorders through a variety of pathways. Therefore, the appropriate TM treatment program makes it more possible to treat gynecological disorders.

4.
JACS Au ; 4(2): 592-606, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38425908

RESUMEN

Li-doped high-entropy oxides (Li-HEO) are promising electrode materials for Li-ion batteries. However, their electrical conduction in a wide range of temperatures and/or at high pressure is unknown, hindering their applications under extreme conditions. Especially, a clear understanding of the conduction mechanism is needed. In this work, we determined the carrier type of several Li-doped (MgCoNiCuZn)O semiconductor compounds and measured their electrical conduction at temperatures 79-773 K and/or at pressures up to 50 GPa. Three optical band gaps were uncovered from the UV-vis-NIR absorption measurements, unveiling the existence of defect energy levels near the valence band of p-type semiconductors. The Arrhenius-like plot of the electrical conductivity data revealed the electronic conduction in three temperature regions, i.e., the ionization region from 79 to 170 K, the extrinsic region from ∼170 to 300 K, and the intrinsic region at ≥300 K. The closeness of the determined electronic band gap and the second optical band gap suggests that the conduction electrons in the intrinsic region originate from a thermal excitation from the defect energy levels to the conduction band, which determines the electronic conductivity. It was also found that at or above room temperature, ionic conduction coexists with electronic conduction with a comparable magnitude at ambient pressure and that the intrinsic conduction mechanism also operates at high pressures. These findings provide us a fundamental understanding of the band structure and conduction mechanism of Li-HEO, which would be indispensable to their applications in new technical areas.

5.
Nat Commun ; 15(1): 2141, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459024

RESUMEN

Flexible thermoelectric devices show great promise as sustainable power units for the exponentially increasing self-powered wearable electronics and ultra-widely distributed wireless sensor networks. While exciting proof-of-concept demonstrations have been reported, their large-scale implementation is impeded by unsatisfactory device performance and costly device fabrication techniques. Here, we develop Ag2Se-based thermoelectric films and flexible devices via inkjet printing. Large-area patterned arrays with microscale resolution are obtained in a dimensionally controlled manner by manipulating ink formulations and tuning printing parameters. Printed Ag2Se-based films exhibit (00 l)-textured feature, and an exceptional power factor (1097 µWm-1K-2 at 377 K) is obtained by engineering the film composition and microstructure. Benefiting from high-resolution device integration, fully inkjet-printed Ag2Se-based flexible devices achieve a record-high normalized power (2 µWK-2cm-2) and superior flexibility. Diverse application scenarios are offered by inkjet-printed devices, such as continuous power generation by harvesting thermal energy from the environment or human bodies. Our strategy demonstrates the potential to revolutionize the design and manufacture of multi-scale and complex flexible thermoelectric devices while reducing costs, enabling them to be integrated into emerging electronic systems as sustainable power sources.

6.
Pest Manag Sci ; 80(6): 2587-2595, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38265118

RESUMEN

BACKGROUND: Cry1Ab has emerged as a bio-insecticide to control Spodoptera litura (Lepidoptera: Noctuidae). However, the sublethal effects of Cry1Ab on the physiological changes and molecular level of S. litura have not been well documented. Our aims in this study were to assess the sublethal effect of Cry1Ab on S. litura, including midgut and Malpighian tubules as targets. RESULTS: After sublethal Cry1Ab exposure, distinct histological alterations were mainly observed in the midgut. Furthermore, the results of comparative RNA sequencing and tandem mass tag-based proteomics showed that, in the midgut, most differential expression genes (DEGs) were up-regulated and significantly enriched in the serine protease activity pathway, and up-regulated differential expression proteins (DEPs) were mainly associated with the oxidative phosphorylation pathway, whereas the down-regulated involved in the ribosome pathways. In the Malpighian tubules, DEGs and DEPs were significantly enriched in the ribosome pathway. We proposed that ribosome may act as a universal target in energy metabolism with other pathways via the results of protein-protein interaction analysis. Further, by verification of the mRNA expression of some Cry protein receptor and detoxification genes after Cry1Ab treatment, it was suggested that the ribosomal proteins (RPs) possibly participate in influencing the Bt-resistance of S. litura larvae under sublethal Cry1Ab exposure. CONCLUSION: Under sublethal Cry1Ab exposure, the midgut of S. litura was damaged, and the proteotranscriptomic analysis elucidated that Cry1Ab disrupted the energy homeostasis of larvae. Furthermore, we emphasized the potential role of ribosomes in sublethal Cry1Ab exposure. © 2024 Society of Chemical Industry.


Asunto(s)
Toxinas de Bacillus thuringiensis , Endotoxinas , Proteínas Hemolisinas , Larva , Túbulos de Malpighi , Spodoptera , Animales , Spodoptera/efectos de los fármacos , Spodoptera/genética , Spodoptera/metabolismo , Spodoptera/crecimiento & desarrollo , Túbulos de Malpighi/efectos de los fármacos , Túbulos de Malpighi/metabolismo , Larva/efectos de los fármacos , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Transcriptoma , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/metabolismo , Insecticidas/toxicidad , Proteoma , Proteómica , Sistema Digestivo/efectos de los fármacos , Sistema Digestivo/metabolismo
7.
Adv Mater ; 36(14): e2310657, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38193844

RESUMEN

Extracting lithium selectively and efficiently from brine sources is crucial for addressing energy and environmental challenges. The electrochemical system employing LiMn2O4 (LMO) electrodes has been recognized as an effective method for lithium recovery. However, the lithium selectivity and stability of LMO need further enhancement for its practical applications. Herein, the Al-doped LMO with reduced lattice constant is successfully fabricated through a facile one-step solid-state sintering method, leading to enhanced lithium selectivity. The reduced lattice constant in Al-doped LMO is proved through spectroscopic analyses and theoretic calculations. Compared to the original LMO, the Al-doped LMO (LiAl0.05Mn1.95O4, LMO-Al0.05) exhibits highercapacitance, lower resistance, and improved stability. Moreover, the LMO-Al0.05 with reduced lattice constant can offer higher Li+ diffusion coefficient and lower intercalation energy revealed by cyclic voltammetry and multiscale simulations. When employed in hybrid capacitive deionization (CDI), the LMO-Al0.05 obtains a Li+ intercalation capacity of 21.7 mg g-1 and low energy consumption of 2.6 Wh mol-1 Li+. Importantly, the LMO-Al0.05 achieves a high Li+ extraction percentage (≈86%) with Li+/Na+ and Li+/Mg2+ selectivity of 1653.8 and 434.9, respectively, in synthetic brine. The results demonstrate that the Al-doped LMO with reduced lattice constant could be a sustainable solution for electrochemical lithium extraction.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38265406

RESUMEN

Bladder cancer (BC) is a common malignant tumor of the urinary system. While current approaches involving adjuvant chemotherapy, radiotherapy, and immunotherapy have shown significant progress in BC treatment, challenges, such as recurrence and drug resistance, persist, especially in the case of muscle-invasive bladder cancer (MIBC). This is mainly due to the lack of pre-existing immune response cells in the tumor immune microenvironment. Micro-environmental changes (such as hypoxia and under-nutrition) can cause the aggregation of unfolded and misfolded proteins in the lumen, which induces endoplasmic reticulum (ER) stress. ER stress and its downstream signaling pathways are closely related to immunogenicity and tumor drug resistance. ER stress plays a pivotal role in a spectrum of processes within immune cells and the progression of BC cells, encompassing cell proliferation, autophagy, apoptosis, and resistance to therapies. Recent studies have increasingly recognized the potential of natural compounds to exhibit anti-BC properties through ER stress induction. Still, the efficacy of these natural compounds remains less than that of immune checkpoint inhibitors (ICIs). Currently, the ER stress-mediated immunogenic cell death (ICD) pathway is more encouraging, which can enhance ICI responses by mediating immune stemness. This article provides an overview of the recent developments in understanding how ER stress influences tumor immunity and its implications for BC. Targeting this pathway may soon emerge as a compelling therapeutic strategy for BC.

9.
Curr Cancer Drug Targets ; 24(3): 340-353, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37592784

RESUMEN

BACKGROUND: The collagen type X alpha 1 (COL10A1) has recently been found to play an important role in the development and progression of cancer. However, the link between COL10A1 and the tumor immune microenvironment remains understood scantily. METHODS: In the current study, the pan-cancer data of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were used to investigate the expression mode, the clinical prognostic and diagnostic value of COL10A1 in different tumors. We used TCGA data to assess the correlations between COL10A1 and clinical symptoms of prostate cancer. The R packages "edgR" and "clusterProfiler" were used for differential expression gene and enrichment analysis of COL10A1. Immunohistochemistry was further employed to corroborate the expression of COL10A1 gene in prostate cancer. After that, we used TIMER to evaluate the pertinence of COL10A1 expression to immune infiltration level in prostate cancer. RESULTS: On the whole, COL10A1 was expressed at significantly higher levels in a variety of tumor tissues than in the corresponding normal tissues. Besides, significant correlations with tumor prognosis and relative exactitude in predicting tumors show that COL10A1 may be a probable prognostic and diagnostic biomarker of prostate cancer. In addition, the evidence indicates a significant correlation between COL10A1 and clinical symptoms of prostate cancer. Furthermore, the main molecular functions of COL10A1 included humoral immune response, complement activation, immunoglobulin, regulation of complement activation, and regulation of humoral immune response. Finally, we found that COL10A1 expression is positively correlated with enhanced macrophage and M2 macrophage infiltration in prostate cancer. CONCLUSION: The study indicates that COL10A1 might participate in M2 macrophage polarization in prostate cancer. COL10A1 might be an innovative biomarker to evaluate tumor microenvironment immune cell infiltration and prognosis in prostate cancer.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Pronóstico , Neoplasias de la Próstata/genética , Macrófagos , Microambiente Tumoral
10.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5701-5706, 2023 Nov.
Artículo en Chino | MEDLINE | ID: mdl-38114166

RESUMEN

The application of new-generation information technologies such as big data, the internet of things(IoT), and cloud computing in the traditional Chinese medicine(TCM)manufacturing industry is gradually deepening, driving the intelligent transformation and upgrading of the TCM industry. At the current stage, there are challenges in understanding the extraction process and its mechanisms in TCM. Online detection technology faces difficulties in making breakthroughs, and data throughout the entire production process is scattered, lacking valuable mining and utilization, which significantly hinders the intelligent upgrading of the TCM industry. Applying data-driven technologies in the process of TCM extraction can enhance the understanding of the extraction process, achieve precise control, and effectively improve the quality of TCM products. This article analyzed the technological bottlenecks in the production process of TCM extraction, summarized commonly used data-driven algorithms in the research and production control of extraction processes, and reviewed the progress in the application of data-driven technologies in the following five aspects: mechanism analysis of the extraction process, process development and optimization, online detection, process control, and production management. This article is expected to provide references for optimizing the extraction process and intelligent production of TCM.


Asunto(s)
Medicamentos Herbarios Chinos , Medicina Tradicional China , Control de Calidad , Macrodatos , Algoritmos
11.
Environ Sci Pollut Res Int ; 30(59): 123694-123709, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37993647

RESUMEN

Microbial communities play an important role in water quality regulation and biogeochemical cycling in freshwater ecosystems. However, there has been a lack of research on the seasonal variation of sediment microorganisms in the sediments of small river basins in typical semi-arid region. In this study, high-throughput DNA sequencing was used to investigate the fungal community and its influencing factors in the sediment of the Dali River in the dry and wet seasons. The results showed that there were obvious seasonal differences in fungal alpha diversity. The diversity and richness of fungi in the dry season were greater than that in the wet season, but the evenness of fungi in the dry season was lower than that in the wet season. In addition, Ascomycota and Basidiomycota were the most important phyla in the Dali River fungal community, but their distributions showed clear seasonal differences. In the dry season, the relative abundance of Ascomycota and Basidiomycota were 12.34-46.42% and 17.59-27.20%, respectively. In the wet season, the relative abundances of these two phyla were 24.33-36.56% and 5.75-12.26%, respectively. PICRUSt2 was used to predict the metabolic function of fungal community in the sediment, and it was found that at the first level, the proportion of biosynthesis in the dry season was higher than that in the wet season. The ecological network structure showed that the fungal community in the wet season was more complex and stable than that in the dry season. The characteristic fungi in the dry season sediment were chytrid fungi in the family Rhizophydiaceae and the order Rhizophydiales, whereas those in the wet season sediment were in the orders Eurotiales and Saccharomycetales. Canonical correspondence analysis (CCA) showed that the physicochemical properties of water and sediment together explained a greater proportion of the dry-season fungal community changes than of the wet-season changes. In the dry season, temperature and ammonia nitrogen in the water were the main factors affecting the change of fungal community, whereas in the wet season, total nitrogen concentration of the water, electrical conductivity, total organic carbon and available phosphorus of the sediment, pH, and temperature were the main factors affecting the changes in fungal community composition. The results of this study enhanced our understanding of microbial communities in semi-arid river ecosystems, and highlight the importance of the management and protection in river ecosystems.


Asunto(s)
Microbiota , Micobioma , Ríos/química , Estaciones del Año , China , Nitrógeno/análisis
12.
Adv Sci (Weinh) ; 10(36): e2304972, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37897321

RESUMEN

Non-Hermitian degeneracies, also known as exceptional points (EPs), have attracted considerable attention due to their unique physical properties. In particular, metasurfaces related to EPs can open the way to unprecedented devices with functionalities such as unidirectional transmission and ultra-sensitive sensing. Herein, an active non-Hermitian metasurface with a loss-induced parity-time symmetry phase transition for ultrafast terahertz metadevices is demonstrated. Specifically, the eigenvalues of the non-Hermitian transmission matrix undergo a phase transition under optical excitation and are degenerate at EPs in parameter space, which is accompanied by the collapse of chiral transmission. Ultrafast EP modulation on a picosecond time scale can be realized through variations in the transient loss at a non-Hermitian metasurface pumped by pulsed excitation. Furthermore, by exploiting the physical characteristics of chiral transmission EPs, a switchable quarter-wave plate based on the photoactive metasurface is designed and experimentally verified and realized the corresponding function of polarization manipulation. This work opens promising possibilities for designing functional terahertz metadevices and fuses EP physics with active metasurfaces.

13.
Nanotechnology ; 35(5)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37871598

RESUMEN

The generation of disorder often gives rise to profound and irreversible physical phenomena. Here, we explore the influence of disorder on the superconducting properties of In2Te3through comprehensive high-pressure investigations. Building upon previous findings, we investigated the progressive suppression of superconductivity in In2Te3during the depressurization process: the increased disorder that ultimately leads to the complete disappearance of the superconducting state. Simultaneously, our high-pressure x-ray diffraction analysis reveals an irreversible structural phase transition. Furthermore, microstructure analysis using transmission electron microscopy clearly demonstrates both grain refinement and a substantial enhancement of disorder. These findings not only provide valuable insights into the mechanism by which disorder suppresses superconductivity, but also offer guidance for future advancements in the fabrication of atmospheric-pressure superconductors.

15.
J Pharm Biomed Anal ; 236: 115694, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37696190

RESUMEN

BACKGROUND: Bladder cancer (BC) caused by Human papillomavirus (HPV) infection remains a complex public health problem in developing countries. Although the HPV vaccine effectively prevents HPV infection, it does not benefit patients with BC who already have HPV. METHODS: Firstly, the differential genes of HPV-related BC patients were screened by transcriptomics, and then the prognostic and clinical characteristics of the differential genes were analyzed to screen out the valuable protein signatures. Furthermore, the compound components and targets of Astragali Radix (AR) were analyzed by network pharmacology, and the intersection targets of drug components and HPV_BC were screened out for pathway analysis. In addition, the binding ability of the compound to the Astragali-HPV_BC target was verified by molecular docking and virtual simulation. Finally, to identify potential targets in BC patients through urine proteomics and in vitro experiments. RESULTS: Eleven HPV_BC-related protein signatures were screened out, among which high expression of EGFR, CTNNB1, MYC, GSTM1, MMP9, CXCR4, NOTCH1, JUN, CXCL12, and KRT14 had a poor prognosis, while low expression of CASP3 had a poor prognosis. In the analysis of clinical characteristics, it was found that high-risk scores, EGFR, MMP9, CXCR4, JUN, and CXCL12 tended to have higher T stage, pathological stage, and grade. Pharmacological and molecular docking analysis identified a natural component of AR (Quercetin) and it corresponding core targets (EGFR). The OB of the natural component was 46.43, and the DL was 0.28, respectively. In addition, EGFR-Quercetin has high affinity. Urine proteomics and RT-PCR showed that EGFR was expressed explicitly in BC patients. Mechanism analysis revealed that AR component targets might affect HPV_BC patients through Proteoglycans in the cancer pathway. CONCLUSION: AR can target EGFR through its active component (Quercetin), and has a therapeutic effect on HPV_BC patients.


Asunto(s)
Planta del Astrágalo , Medicamentos Herbarios Chinos , Infecciones por Papillomavirus , Neoplasias de la Vejiga Urinaria , Humanos , Metaloproteinasa 9 de la Matriz , Farmacología en Red , Simulación del Acoplamiento Molecular , Infecciones por Papillomavirus/tratamiento farmacológico , Proteómica , Quercetina , Receptores ErbB/genética , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
16.
World J Surg Oncol ; 21(1): 285, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697366

RESUMEN

BACKGROUND: To compare the surgical effects of lateral transperitoneal approach (LTA) and posterior retroperitoneal approach (PRA) for pheochromocytoma of different sizes. METHODS: Data on patients with pheochromocytoma from 2014 to 2023 were collected from our hospital. According to different surgical approaches and tumor size, all patients were divided into four groups: tumor size < 6 cm for LTA and PRA and tumor size ≥ 6 cm for LTA and PRA. We compared these two surgical methods for pheochromocytoma of different sizes. RESULTS: A total of 118 patients with pheochromocytoma underwent successful laparoscopic surgery, including PRA group (n = 80) and LTA group (n = 38). In tumor size < 6 cm, the outcomes were no significant difference in LTA and PRA. In tumor size ≥ 6 cm, there was a significant difference in operation time (214.7 ± 18.9 vs. 154.3 ± 8.2, P = 0.007) and intraoperative blood loss (616.4 ± 181.3 vs. 201.4 ± 45.8, P = 0.037) between LTA and PRA. CONCLUSION: LTA and PRA were performed safely with similar operative outcomes in patients with pheochromocytoma size < 6 cm. While both LTA and PRA were executed with a commendable safety profile and comparable operative results in patients afflicted by pheochromocytomas < 6 cm, the PRA technique distinctly showcased advantages when addressing large-scale pheochromocytomas (≥ 6 cm). Notably, this manifested in reduced operative time, diminished intraoperative blood loss, decreased hospitalization expenses, and a paucity of procedural complications.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Feocromocitoma , Humanos , Feocromocitoma/cirugía , Pérdida de Sangre Quirúrgica , Estudios Retrospectivos , Neoplasias de las Glándulas Suprarrenales/cirugía , Hospitalización
17.
Adv Pharmacol ; 98: 179-224, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37524487

RESUMEN

Idiopathic pulmonary fibrosis (IPF) results from the dysregulated process of injury and repair, which promotes scarring of the lung tissue and deposition of collagen-rich extracellular matrix (ECM) components, that make the lung unphysiologically stiff. IPF presents a serious concern as its pathogenesis remains elusive, and current anti-fibrotic treatments are only effective in slowing rather than halting disease progression. The IPF disease pathogenesis is incompletely defined, complex and incorporates interplay between different fibrogenesis signaling pathways. Preclinical IPF experimental models used to validate drug candidates present significant limitations in modeling IPF pathobiology, with their limited time frame, simplicity and inaccurate representation of the disease and the mechanical influences of IPF. Potentially more accurate mimetic disease models that capture the cell-cell and cell-matrix interaction, such as 3D cultures, organoids and precision-cut lung slices (PCLS), may yield more meaningful clinical predictions for drug candidates. Recent advances in developing anti-fibrotic compounds have positioned drug towards targeting components of the fibrogenesis signaling pathway of IPF or the extracellular microenvironment. The major goals in this area of research focus on finding ways to reverse or halt the disease progression by utilizing more disease-relevant experimental models to improve the qualification of potential drug targets for treating pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar Idiopática , Humanos , Fibrosis , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Progresión de la Enfermedad
18.
Transl Cancer Res ; 12(6): 1535-1551, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37434693

RESUMEN

Background: Acute myeloid leukemia (AML) is one of the most common hematologic malignancies with a poor prognosis and high recurrence rate. The discovery of new predictive models and therapeutic agents plays a crucial role. Methods: The differentially expressed gene that was explicitly highly expressed in The Cancer Genome Atlas (TCGA) and GSE9476 transcriptome databases were screened and included in the least absolute shrinkage and selection operator (LASSO) regression model to derive risk coefficients and build a risk score model. Functional enrichment analysis was conducted on the screened hub genes to explore the potential mechanisms. Subsequently, critical genes were incorporated into a nomogram model based on risk scores to analyze prognostic value. Finally, this study combined network pharmacology to find potential natural compounds for hub genes and used molecular docking to verify the binding ability of molecular structures to natural compounds to explore drug development for possible efficacy in AML. Results: A total of 33 highly expressed genes may be associated with poor prognosis of AML patients. After LASSO and multivariate Cox regression analysis of 33 critical genes, Rho-related BTB domain containing 2 (RHOBTB2), phospholipase A2 (PLA2G4A), interleukin-2 receptor-α (IL2RA), cysteine and glycine-rich protein 1 (CSRP1), and olfactomedin-like 2A (OLFML2A) were found to played a significant role in the prognosis of AML patients. CSRP1 and OLFML2A were independent prognostic factors of AML. The predictive power of these 5 hub genes in combination with clinical features was better than clinical data alone in predicting AML in the column line graphs and had better predictive value at 1, 3, and 5 years. Finally, through network pharmacology and molecular docking, this study found that diosgenin in Guadi docked well with PLA2G4A, beta-sitosterol in Fangji docked well with IL2RA, and OLFML2A docked well with 3,4-di-O-caffeoylquinic acid in Beiliujinu. Conclusions: The predictive model of RHOBTB2, PLA2G4A, IL2RA, CSRP1, and OLFML2A combined with clinical features can better guide the prognosis of AML. In addition, the stable docking of PLA2G4A, IL2RA, and OLFML2A with natural compounds may provide new options for treating AML.

19.
Front Immunol ; 14: 1188520, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37441065

RESUMEN

Mounting evidence suggests that the gut microbiota plays a crucial role in the development and treatment of various cancers. Recent research on the urinary microbiota challenges the long-standing belief that urine is sterile, as urinary microbiota has been implicated in the development of bladder and prostate cancers, similar to the role of gut microbiota in cancer development. Although the precise involvement of microbiota in the proliferation and differentiation of renal cell carcinoma (RCC) remains unclear, dysbiosis is considered one possible mechanism by which microbiota may contribute to RCC development and treatment. This review summarizes potential mechanisms by which gut microbiota may contribute to the development of RCC, and provides evidence for the involvement of urinary microbiota in RCC. We also explore the role of gut microbiota in RCC treatment and propose that the composition of gut microbiota could serve as a predictive marker for the potential efficacy of immune checkpoint inhibitors (ICIs) in RCC patients. Additionally, evidence suggests that modulating the abundance and distribution of microbiota can enhance the therapeutic effects of drugs, suggesting that microbiota may serve as a promising adjuvant therapy for RCC. Overall, we believe that further investigation into the gut and urinary microbiome of RCC patients could yield valuable insights and strategies for the prevention and personalized treatment of RCC.


Asunto(s)
Carcinoma de Células Renales , Microbioma Gastrointestinal , Neoplasias Renales , Microbiota , Neoplasias de la Próstata , Masculino , Humanos , Carcinoma de Células Renales/etiología , Carcinoma de Células Renales/terapia , Neoplasias Renales/etiología , Neoplasias Renales/terapia , Neoplasias Renales/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...